
Rootkit in your laptop:
Hidden code in your chipset and how to discover what exactly it does

Igor Skochinsky
Hex-Rays

Breakpoint 2012
Melbourne

2(c) 2012 Igor Skochinsky

OutlineOutline

High-level overview of the ME
Low-level details
ME security and potential attacks
Results
Future work

3(c) 2012 Igor Skochinsky

ME: High-level overview

Management Engine (or Manageability Engine) is a
dedicated microcontroller on recent Intel platforms
In first versions it was included in the network card, later
moved into the chipset
Shares flash with the BIOS but is completely independent
from the main CPU
Can be active even when the system is hibernating or
turned off (but connected to mains)
Has a dedicated connection to the network interface; can
intercept or send any data without main CPU's knowledge

4(c) 2012 Igor Skochinsky

ME: High-level overview

Credit: Intel 2009

5(c) 2012 Igor Skochinsky

ME: High-level overview

Communicating with the Host OS and network

HECI: Host Embedded Controller Interface;
communication using a PCI memory-mapped area
Network protocol is SOAP based; can be plain HTTP or
HTTPS

6(c) 2012 Igor Skochinsky

ME: High-level overview

Some of the ME components

Active Management Technology (AMT): remote
configuration, administration, provisioning, repair, KVM
System Defense: lowest-level firewall/packet filter with
customizable rules
IDE Redirection (IDE-R) and Serial-Over-LAN (SOL): boot
from a remote CD/HDD image to fix non-bootable or
infected OS, and control the PC console
Identity Protection: embedded one-time password (OTP)
token for two-factor authentication
Protected Transaction Display: secure PIN entry on a
remote server not visible to the host software

7(c) 2012 Igor Skochinsky

ME: High-level overview

Intel Anti-Theft

PC can be locked or disabled if it fails to check-in with the
remote server at some predefined interval; if the server
signals that the PC is marked as stolen; or on delivery of a
"poison pill"
Poison pill can be sent as an SMS if a 3G connection is
available
Can notify disk encryption software to erase HDD
encryption keys
Reactivation is possible using previously set up recovery
password or by using one-time password

8(c) 2012 Igor Skochinsky

ME: Low-level details

9(c) 2012 Igor Skochinsky

ME: Low-level details

Sources of information

Intel's whitepapers and other publications (e.g. patents)
Intel's official drivers and software

HECI driver, management services, status checkers
AMT SDK, code samples
Linux drivers and supporting software; coreboot

BIOS updates for boards on Intel chipsets
Even though ME firmware is usually not updateable

using normal means, it's usually still included in the
BIOS image

Sometimes separate ME firmware updates are
available too

10(c) 2012 Igor Skochinsky

ME: Low-level details

Sources of information
Intel's ME Firmware kits are not supposed to be distributed
to end users
However, many vendors still put up the whole package
 instead of just the drivers,
 or forget to disable the
 FTP listing

With a few picked keywords
you can find the good stuff :)

11(c) 2012 Igor Skochinsky

ME: Low-level details

The SPI flash is shared between BIOS,
ME and GbE
For security, BIOS (and OS) should not
have access to ME region
The chipset enforces it using
information in the Descriptor region
The Descriptor region must be at the
lowest address of the flash and contain
addresses and sizes of other regions,
as well as their mutual access
permissions.

12(c) 2012 Igor Skochinsky

ME: Low-level details

ME region itself is not monolithic
It consists of several partitions, and the table at the start*
describes them

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 "$FPT" NumEntries Ver Entry

Type
HdrLen Checksum FlashCycl

eLifetime
FlashCycl

eLimit
10 UMASize Flags

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 Name Owner Offset Length
10 StartTokens MaxTokens ScratchSectors Flags

Partition table headerPartition table header

Partition table entry

*Starting from ME 3.x the table begins at offset 0x10 (table version 2.0)

13(c) 2012 Igor Skochinsky

ME: Low-level details

===ME Flash Partition Table===
NumEntries: 10
Version: 2.0
EntryType: 10
HeaderLen: 30
Checksum: 9F
FlashCycleLifetime: 7
FlashCycleLimit: 100
UMASize: 16
Flags: FFFFFE07
 EFFS present: 1
 ME Layout Type: 3

Partition: 'FOVD'
Owner: 'KRID'
Offset/size: 00000400/00001C00
TokensOnStart: 00000001
MaxTokens: 00000001
ScratchSectors: 00000000
Flags: 0783
 Type: 3 (Generic)
 DirectAccess: 1
 Read: 1
 Write: 1
 Execute: 1
 Logical: 0
 WOPDisable: 0
 ExclBlockUse: 0

0 1 2 3 4 5
Code Block I/O NVRAM Generic Effs Rom

Partition type (Flags&0x7F):

14(c) 2012 Igor Skochinsky

ME: Low-level details

Code partitions have a header called "manifest"
It contains versioning info, number of code modules, but
also an RSA signature of the whole partition
Format of the header is very close to TXT AC modules

0 1 2 3 4 5 6 7 8 9 A B C D E F

00 Type SubType HdrLen HdrVer Flags

10 Vendor Date Size Tag

20 NumMods Version Reserved==>

70 <==Reserved KeySize Reserved

80-17F RsaPubKey

180 RsaPubExp RsaSig==>

280 <==RsaSig PartitionName

15(c) 2012 Igor Skochinsky

ME: Low-level details

Module Type: 4, Subtype: 0
Header Length: 0xA1 (0x284 bytes)
Header Version: 1.0
Flags: 0x00000000 [production signed] [production flag]
Module Vendor: 0x8086
Date: 20120705
Total Manifest Size: 0xFD (0x3F4 bytes)
Tag: $MN2
Number of modules: 2
Version: 8.1.0.1265
Unknown data 1: [0L, 1L, 2L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L]
Key size: 0x40 (0x100 bytes)
Scratch size: 0x01 (0x4 bytes)
RSA Public Key: [skipped]
RSA Public Exponent: 17
RSA Signature: [skipped]
Partition name: MDMV
Unknown data 2: [0L, 0L]

An example code partition header

16(c) 2012 Igor Skochinsky

ME: Low-level details

The format of module headers depends on the version
(header tag $MAN or $MN2)
Module headers include module name, hash, sizes
(compressed and uncompressed), flags and runtime info
(load address, entrypoints)
Modules can be stored uncompressed, or compressed
with LZMA or Huffman
Header tag: $MME
Module name: JOM
Hash: AC A3 [...] C1 6C
Offset: 0x00015F7A
Data length: 0x00019F6D
LoadBase: 0x200B1000
Flags: 0x0012D42A
 Power Type: POWER_TYPE_M0_ONLY (1)
 Compression: COMP_TYPE_LZMA (2)
 API Type: API_TYPE_KERNEL (2)

17(c) 2012 Igor Skochinsky

ME: Low-level details

There have been two generations of the processor core,
and corresponding changes in firmware layout

Gen 1 Gen 2
ME versions 1.x-5.x 6.x-8.x
Core ARCTangent-A4 ARCTangent-A5(?)
ISA ARC (32-bit) ARCompact (32/16)
Manifest tag $MAN $MN2
Module header tag $MOD $MME

18(c) 2012 Igor Skochinsky

ME: Low-level details

The OS running on the chip is ThreadX RTOS from
Express Logic
OS provides APIs for managing threads (tasks),
semaphores, message queues, event flags, timers,
memory allocations etc.
The ME firmware wraps those APIs in a module called
KERNEL, and uses it from other modules (via tables of
pointers).
Express Logic provides a demo version (binary only) of
ThreadX for ARC, which helps in identifying APIs in ME
Unfortunately Gen2 uses the Huffman compression
(which I have not figured out yet) for the KERNEL :(
So the going is somewhat slow for the newer firmwares

19(c) 2012 Igor Skochinsky

ME: communications

If AMT option is enabled, ME listens for packets on several ports
(e.g. 16992 for HTTP and 16993 for HTTPS) for HTTP requests from
browsers (for Web UI) or SOAP requests.
Since it has a separate IP and MAC for the OOB interface, this does
not interfere with the host
ME is also exposed by the chipset as a PCI device to the CPU, and
can exchange messages with it using Host Embedded Controller
Interface (HECI) protocol over a memory-mapped IO area (MMIO)
The protocol itself is described in public documentation [DCMI-HI],
but the higher-level messages are not well documented
ME can expose various clients to the host, each identified by a
unique UUID or a numeric ID, and host can talk to each client
independently
Several core clients have fixed low IDs, the rest gets dynamic
numbers

20(c) 2012 Igor Skochinsky

ME: communications

An example of enumerating clients (FreeBSD):
heci0: <Intel 82G33/G31/P35/P31 Express HECI/MEI Controller> mem
0xd0526100-0xd052610f irq 16 at device 3.0 on pci0
heci0: using MSI
heci0: [ITHREAD]
heci0: found ME client at address 0x02:
heci0: status = 0x00
heci0: protocol_name(guid) = BB875E12-CB58-4D14-AE93-8566183C66C7
heci0: found ME client at address 0x03:
heci0: status = 0x00
heci0: protocol_name(guid) = A12FF5CA-FACB-4CB4-A958-19A23B2E6881
heci0: found ME client at address 0x06:
heci0: status = 0x00
heci0: protocol_name(guid) = 9B27FD6D-EF72-4967-BCC2-471A32679620
heci0: found ME client at address 0x07:
heci0: status = 0x00
heci0: protocol_name(guid) = 55213584-9A29-4916-BADF-0FB7ED682AEB
[...]
heci0: found ME client at address 0x27:
heci0: status = 0x00
heci0: protocol_name(guid) = 05B79A6F-4628-4D7F-899D-A91514CB32AB

21(c) 2012 Igor Skochinsky

ME: communications

A list of some of the known clients, gathered from headers and
other sources

Fixed ID GUID Name

8e6a6715-9abc-4043-88ef-9e39c6f63e0f MKHI
8 42b3ce2f-bd9f-485a-96ae-26406230b1ff ICC
9 d2ea63bc-5f04-4997-9454-8cadf4e3ef8a Thermal

309dcde8-ccb1-4062-8f78-600115a34327 Firmware Update
05b79a6f-4628-4d7f-899d-a91514cb32ab Watchdog
6733a4db-0476-4e7b-b3af-bcfc29bee7a7 LME
12f80028-b4b7-4b2d-aca8-46e0ff65814c PTHI (AMTHI)
3d98d9b7-1ce8-4252-b337-2eff106ef29f LMS
6b5205b9-8185-4519-b889-d98724b58607 QST
0f908627d-13bf-4a04-0b91f-0a64e9245323d CLS
3c4852d6-d47b-4f46-b05e-b5edc1aa430a TDT (AT-p)

22(c) 2012 Igor Skochinsky

ME: communications

One of the main users of the HECI interface is the BIOS
It has to allocate the UMA memory for ME, protect it, and notify
ME about it
It also needs to tell ME about various events, including End-Of-
POST (EOP)
If not disabled at manufacturing time, BIOS can also ask ME to
temporarily open its flash region for reading and writing; this
functionality is intended to allow ME region updates, and is
called Host ME Region Flash Protection Override (HMRFPO)
An optional module inside BIOS, MEBx (ME BIOS Extension)
provides a UI for the user to configure various ME options. It
also uses HECI to communicate with ME
Thus, reverse-engineering BIOS is a good source for info about
ME communications

23(c) 2012 Igor Skochinsky

ME: Security

24(c) 2012 Igor Skochinsky

ME: Security

ME includes numerous security features
Code signing: all code that is supposed to be running on the
ME is signed with RSA and is checked by the boot ROM

“During the design phase, a Firmware Signing Key (FWSK) public/private pair is
generated at a secure Intel Location, using the Intel Code Signing System. The
Private FWSK is stored securely and confidentially by Intel. Intel AMT ROM
includes a SHA-1 Hash of the public key, based on RSA, 2048 bit modulus
fixed. Each approved production firmware image is digitally signed by Intel with
the private FWSK. The public FWSK and the digital signature are appended to
the firmware image manifest.

At runtime, a secure boot sequence is accomplished by means of the boot ROM
verifying that the public FWSK on Flash is valid, based on the hash value in
ROM. The ROM validates the firmware image that corresponds to the manifest’s
digital signature through the use of the public FWSK, and if successful, the
system continues to boot from Flash code.”

From "Architecture Guide: Intel® Active Management Technology", 2009

25(c) 2012 Igor Skochinsky

ME: Security

ME requires some RAM to put unpacked code and
runtime variables (MCU's own memory is too limited and
slow)
This memory is reserved by BIOS on ME's request and
cannot be accessed by the host CPU once locked.

A memory remapping attack was demonstrated by
Invisible Things Lab in 2009, but it doesn't work anymore
Cold boot attack is probably still possible, though...
An open question: how does it work with the integrated
memory controller on the newer chips?

26(c) 2012 Igor Skochinsky

ME: Security

Flash access is limited by the chipset according to the
flags in the descriptor region (start of the flash chip), and
normally ME region is not accessible to others
Since the descriptor region itself is marked read-only at
end of manufacturing, changing permissions is not trivial
One obvious solution is to use a hardware flash
programmer to write to the chip directly, bypassing CPU
and chipset. This might require unsoldering the chip,
however
Another option is the HMRFPO message which asks ME
to unlock the flash temporarily, but it's tricky to use
because it only works before End-Of-POST

27(c) 2012 Igor Skochinsky

Getting along with the BIOS

I decided to find a place where the BIOS sends End-Of-
Post to the ME
Extracted BIOS with 7-zip (UEFI Firmware Filesystem)
Searched for "Post", both ANSI and Unicode
A strange file appears...

28(c) 2012 Igor Skochinsky

Getting along with the BIOS

The file contains bunch of Unicode strings, first in English
then in couple of other languages
The strings refer to the BIOS setup items
File appears next to a .efi executable, meaning they were
two sections of the flash file "Setup".
So obviously this is a kind of a resource file for the BIOS
setup UI
Turns out that (U)EFI provides a standard way to encode
strings and forms for UI, called HII (Human Interface
Infrastructure)
And someone already wrote tools[1] to parse them...

[1] http://marcansoft.com/blog/2009/06/enabling-intel-vt-on-the-aspire-8930g/

http://marcansoft.com/blog/2009/06/enabling-intel-vt-on-the-aspire-8930g/

29(c) 2012 Igor Skochinsky

Getting along with the BIOS

After some hacking of the scripts (apparently there were
some updates in the format) dumped a list of strings and
forms
And here's the option we need:

However, it doesn't seem to be present in the actual UI?

Suppress If
 EQ [0xdb<1>] == 0x0
 One Of [0xdc<1>] u'End of Post Message'
 \Help text: u'End of Post Message Help'
 Option 'Disabled' = 0x0 Flags 0x10 Key 0x0
 Option 'Enabled' = 0x1 Flags 0x13 Key 0x0
 End One Of
End If

30(c) 2012 Igor Skochinsky

Getting along with the BIOS

This setting is a part of a form named 'ME Subsystem'
Scrolling a bit around, we find:

So, the form is not shown if the byte in the Setup variable
at offset 0xDB is either 0 or 1.
One solution is to patch the form bytecode, pack the file
back into the BIOS (updating the checksums) and flash
the new BIOS
But this is rather involved and risky. Is there an easier
way?

Suppress If
 LIST [0xdb<1>] in (0x0,0x1)
 Reference: 'ME Subsystem' Form ID 0x1a Flags 0x0 Key 0x0
 \Help text: u'ME Subsystem Parameters'
End If

31(c) 2012 Igor Skochinsky

Getting along with the BIOS

Examining and editing UEFI variables is rather awkward
but doable with the EFI shell and command "dmpstore"

Changing EFI vars is much easier than patching actual
files in the FFS. Also, no need to reflash.
Since neither 0 nor 1 will show the form, let's put
something else in there... for example, 0xFF

Did it work?

 0 1 2 3 4 5 6 7 8 9 A B C D E F
000000d0 00 00 00 00 00 00 01 00 00 00 00 01 01 00 00 01

> dmpstore Setup -s temp.bin
> hexedit temp.bin
> dmpstore Setup -l temp.bin
> exit

32(c) 2012 Igor Skochinsky

Getting along with the BIOS

33(c) 2012 Igor Skochinsky

Getting along with the BIOS

Now we can change the ME options and disable End-Of-
POST
One minor issue: when you return from the "ME
Subsystem" form, the menu item disappears :)
This happens because the byte 0xDB gets set to 1 (or 0, if
you disable ME) again, triggering the "Suppress If"
opcode
So if you need to go there once more, you need to do the
dmpstore/hexedit trick again
By the way, instead of going through the menus we could
directly set the necessary value in the Setup variable (byte
at offset 0xDC)

34(c) 2012 Igor Skochinsky

Getting along with the BIOS

Rebooting after changing "End of Post Message" to
"Disabled":

35(c) 2012 Igor Skochinsky

Getting along with the BIOS

Okay, we have our ME in desired state, what now?
The specifics of the HMRFPO message are not available
in public documentation
However, some BIOS updates exist that allow updating
ME version from 7.0 to 8.0
ME cannot update itself to the next major version, so this
must be done by external (to the ME) code
From reading the "Bios ME7 to ME8 update SOP" for MSI
boards it's clear that the ME update happens on the first
boot of the new BIOS
So the code must be there somewhere...

36(c) 2012 Igor Skochinsky

Getting along with the BIOS

Several days of reversing later...
Found the new ME partition (stored as a file in the UEFI
volume)
Found the code that does the ME update ("Updating BIOS
ME, please wait")
Found code which seems to talk to ME and send
commands not mentioned in documentation
Found code in ME which handles these messages
(probably)
Converted an AMT SDK sample to send similar
commands
Unfortunately, didn't work on my test hardware (ASUS)
However, it was a good learning experience!

37(c) 2012 Igor Skochinsky

A different approach

After I went through this, I accidentally found a mention that
the newest BIOS for my board contains ME 8.0 (this fact was
not mentioned in Asus' release notes)
As a nice side effect, this update completely opens the ME
region!
So now I can read and write the ME region freely (using
Intel's FPT)
I can also analyze the update process in more detail and
figure out how it works around the ME lock on the old
version

38(c) 2012 Igor Skochinsky

Poking the flash

One of the partitions in the ME region is "EFFS"
It contains in turn other, virtual partitions with tags beginning
with "NV" (non-volatile variables) and "BI" (block I/O), used
by the software components of ME
Some of these variables are used to enable and disable
various ME features which usually depend on the specific
chipset model (a single ME binary is used on many
configurations)
For example, ME on my board includes modules TDT (Anti-
Theft) and PAVP (Protected Audio/Video Path), but they're
disabled in software
I tried changing some obvious bits, but it seems it's not that
simple...

39(c) 2012 Igor Skochinsky

Results

I have not managed to run my own rootkit on the ME (yet)
However, I've learned a lot about it and I hope to achieve it
in future
Intel seems to have done a good job on security so far, but
there's a lot of code in there (now up to 5MB, compressed)
I made some tools that should help others in research:

ME ROM dumper/extractor
ARC processor module for IDA

40(c) 2012 Igor Skochinsky

ME dumper/extractor

Written in Python
Supports parsing of the following formats:

Full SPI flash image (signature 5A A5 F0 0F)
Separate ME region (signature $FPT)
Individual ME code module ($MN2 or $MAN)

Prints detailed header info
prepares LZMA-compressed modules for easy unpacking with
7-zip

41(c) 2012 Igor Skochinsky

ME dumper/extractor
Header tag: $MME
Module name: JOM
Hash: FB 49 10 CB 04 C8 62 9D BE 53 BB 7A CF 0C
6A D4 1F F9 92 A7 AD 52 2A 55 FE F6 71 74 06 F0 0C 64
Unk34: 0x20157000
Offset: 0x0001198E
Unk38: 0x00029000
Data length: 0x000133CA
Unk44: 0x00029518
Unk48: 0x00029518
LoadBase: 0x20159000
Flags: 0x0012D42A
 Unknown B0: 0
 Power Type: POWER_TYPE_M0_ONLY (1)
 Unknown B3: 1
 Compression: COMP_TYPE_LZMA (2)
 Stage: STAGE 8 (8)
 API Type: API_TYPE_KERNEL (2)
 Unknown B14: 1
 Unknown B15: 1
 Privileged: 0
 Unknown B17_19: 1
 Unknown B20_21: 1

42(c) 2012 Igor Skochinsky

ARC processor: objdump

What are the results of underlined instructions?

43(c) 2012 Igor Skochinsky

ARC processor: IDA

44(c) 2012 Igor Skochinsky

ARC processor: objdump

45(c) 2012 Igor Skochinsky

ARC processor: IDA

46(c) 2012 Igor Skochinsky

ARC processor module for IDA

Supports ARCTangent-A4 (older, 32-bit only instructions)
and ARCompact (newer, mixed 32/16-bit ISA)
Tracks changes to SP register and creates local variables
Handles switch tables
Tracks register values to find more cross-references
Inlines constant pool loads (PC-relative) for convenience
In general, makes life not constant pain
Not production quality yet, but hopefully will appear in the
next version of IDA

47(c) 2012 Igor Skochinsky

Future work

Dynamic Application Loader
New feature in 7.1/8.0 firmware: load Java applets and

run them inside ME
Used for things like PIN entry UI and remote

authentication
The applets provided by Intel are signed, but it's one more

vector of entry...
EFFS parsing and modifying

Most of the ME state is stored there
If we can modify flash, we can modify EFFS
Critical variables are protected from tampering but the

majority isn't
Complicated format because of flash wear leveling

48(c) 2012 Igor Skochinsky

Future work

Huffman compression
Used in newer firmwares for compressing the kernel and

some other modules
Couldn't find decompression code; some whitepapers

mention hardware decompression...
Still, Huffman is a pretty simple protocol, so should be

doable from just the compressed data
ME ↔ Host protocols

Most modules use different message format
A lot of undocumented messages; some modules seem to

be not mentioned anywhere
Some client software has very verbose debugging

messages in their binaries...

49(c) 2012 Igor Skochinsky

Future work

BIOS RE
In early boot stages ME accepts some things which are

not possible later
Reversing BIOS modules that talk to ME is a good source

of info
Even better would be to run custom code early
Big room for improvement in tools

Simulation and fuzzing
Open Virtual Platform (www.ovpworld.org) has modules

for ARC600 and ARC700 (ARCompact-based)
They claim that it's easy to extend the models with

emulation for custom hardware
The simulator has GDB stub for debugging
Debugging and fuzzing should be possible

http://www.ovpworld.org/

50(c) 2012 Igor Skochinsky

References and links

http://software.intel.com/en-us/articles/architecture-guide-intel-active-management-technology/

http://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide/

http://theinvisiblethings.blogspot.com/2009/08/vegas-toys-part-i-ring-3-tools.html

http://download.intel.com/technology/itj/2008/v12i4/paper[1-10].pdf

http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/100402-Vassilios_Ververis-with-cover.pdf

http://www.thefengs.com/wuchang/work/courses/cs592/cs592_spring2007/

http://www.stewin.org/papers/dimvap15-stewin.pdf

http://www.stewin.org/techreports/pstewin_spring2011.pdf

http://www.stewin.org/slides/pstewin-SPRING6-EvaluatingRing-3Rootkits.pdf

http://marcansoft.com/blog/2009/06/enabling-intel-vt-on-the-aspire-8930g/

http://flashrom.org/trac/flashrom/browser/trunk/Documentation/mysteries_intel.txt

http://review.coreboot.org/gitweb?p=coreboot.git;a=blob;f=src/southbridge/intel/bd82x6x/me.c

http://download.intel.com/technology/product/DCMI/DCMI-HI_1_0.pdf

http://software.intel.com/en-us/articles/architecture-guide-intel-active-management-technology/
http://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide/
http://theinvisiblethings.blogspot.com/2009/08/vegas-toys-part-i-ring-3-tools.html
http://download.intel.com/technology/itj/2008/v12i4/paper%5B1-10%5D.pdf
http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/100402-Vassilios_Ververis-with-cover.pdf
http://www.thefengs.com/wuchang/work/courses/cs592/cs592_spring2007/
http://www.stewin.org/papers/dimvap15-stewin.pdf
http://www.stewin.org/techreports/pstewin_spring2011.pdf
http://www.stewin.org/slides/pstewin-SPRING6-EvaluatingRing-3Rootkits.pdf
http://marcansoft.com/blog/2009/06/enabling-intel-vt-on-the-aspire-8930g/
http://flashrom.org/trac/flashrom/browser/trunk/Documentation/mysteries_intel.txt
http://review.coreboot.org/gitweb?p=coreboot.git;a=blob;f=src/southbridge/intel/bd82x6x/me.c
http://download.intel.com/technology/product/DCMI/DCMI-HI_1_0.pdf

51(c) 2012 Igor Skochinsky

Thank you!

Questions?

igor@hex-rays.com
skochinsky@gmail.com

mailto:igor@hex-rays.com
mailto:skochinsky@gmail.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

